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Abstract: 
Mangroves play an important role in reducing global warming and improving coastal and 

marine ecosystems. This research assessed the aquatic environment quality in some mangrove 

communities along Egyptian Red Sea coast compared to no-mangrove areas. In autumn 2021,the 

study was conducted in four regions: Safaga, Kalwaye, El-Quih, and Wadi El-Quih. The 

physicochemical parameters of the collected water samples were measured. The results showed 

that the levels of pH, temperature, turbidity, electric conductivity, salinity, NO2, and PO4 were all 

within the permissible limits of natural environment and mariculture according to CCME and 

MMWQS guidelines. They ranged between (7.57 – 8.60) ,(26.32 – 26.63 
o
C ),(0.31 – 3.20 NTU), 

(54.98 – 62.54 ms/cm ),(36.41 – 42.09 ppt) , ( 0.90 – 3.65 µg/L ), and (0.12 – 14. 33 µg/L), 

respectively. Nitrate levels in all locations' water samples were above the permissible limits, 

which ranged from 67.17 to 83 µg/L. Dissolved oxygen levels were above 5 mg/L in most 

areas, while in the El-Quih region, it decreased to a value between 2 and 4.35mg/L. Generally, 

the results indicated that the aquatic environment of mangrove communities in the El-Quih area 

possesses the lowest water quality compared to other study areas. This is attributed to 

the low levels of dissolved oxygen and high concentrations of nitrates, salinity, turbidity, and 

nitrites. The present study highlights the necessity of applying integrated environmental 

management (IEM) to mangrove communities in El-Quih area  and other areas to support the 

achievement of sustainable development goals in the Red Sea area. 

Keywords: Mangroves, Red Sea, Physicochemical, Aquatic Environment. 

1- Introduction 

The Red Sea is regarded as one of the unique natural resources that contribute to sustainable 

development goals (SDGs) regarding climate action, zero hunger, affordable and clean energy, 

and a sustainable community (RSG, 2023). The Red Sea is a unique semi-closed basin due to its 

seclusion from the world's oceans and location (Halim, 1984).  
_____________________________ 
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It is the warmest and saltiest body of water among the open seas and has a distinctive ecosystem 

(Alraddadi, 2013). The Red Sea's coastal and marine environment is a very diverse ecosystem. 

Mangrove Communities are important wetlands found along the intertidal zone of the coastal 

line in the Egyptian Red Sea. Mangroves are estimated in Egypt to cover about 525 hectares 

(Kairo and Hegazy, 2003). Mangrove forests play a crucial role in fighting global warming by 

absorbing and storing carbon in both their vegetation and underlying soil. (Alongi, 2022; Bartoli 

et al., 2020; IUCN, 2017). Mangroves are estimated to store 1023 Mg C ha
−1

 y
-1

 (Song et al., 

2023). Additionally, mangroves help in preventing storms, hurricanes, coastal erosion, and tidal 

waves(Blankespoor et al., 2017, Hespen et al.,2023) Recently, mangroves have been threatened 

by natural and anthropogenic activities such as urbanization, pollution, aquaculture, and tourism. 

with 20% to 33% of their habitat lost (Marchio et al.,2016). Mangroves are contributing to water 

quality improvement through the maintenance of the health of marine waters. In consideration of 

their enormous role in filtering pollutants, protecting sediment erosion, and preserving 

biodiversity (Jitthaisong et al., 2012). Muttaqin et al. (2024) provided information on how water 

quality has impacted growth factors in the case of mangroves, where the optimal dissolved 

oxygen in mangrove ecosystems lies in the range of 3–7 mg/L, and the ideal range of salinity is 

10–30 ppt. Samsudin and Azid (2018) emphasized the importance of continuous water quality 

monitoring in mangrove estuaries for ecosystem health. Sari and Soeprobowati 

(2021) identified the water quality within the coastal area of Tambakredjo by physical and 

chemical measurements and reported that the expected loss of the mangrove occurs due to 

natural processes or human activities that seriously affect biodiversity and water quality. 

The current research focuses on studying the physicochemical characteristics of coastal waters 

surrounding mangrove communities on some Egyptian Red Sea coasts compared to coastal areas 

devoid of mangrove communities, in addition to estimating pollution levels, where periodic 

monitoring of water quality around mangrove communities is one of the main measures to 

preserve and develop them. 

2. Materials and Methods 
2.1. Study Area 

This study was conducted on Egyptian Red Sea coast, the study was conducted in four regions: 

(a) El-Quih, (b) Wadi El-Quih, (c) Safaga, and (d) Kalwaye. Mangrove communities 

characterize the coasts of the Safaga and El-Quih regions, while Kalwaye and Wadi El-Quih 

areas are devoid of mangrove communities.  (Fig 1). The study areas of  Safaga, El-Quih, Wadi 

El-Quih, and Kalwaye cover 2 km, 1 km, 0.70 km, and 0.60 km of the coastal line of the Red 

Sea, respectively. A study of the characteristics of monitoring sites confirmed no point-source 

pollution was detected near any study areas. 
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Fig 1. Study areas: (a) El-Quih, (b) Wadi El-Quih, (c) Safaga, and (d) Kalwaye regions 

 

2.2. Water Sampling  

Each of the study areas was divided into a number of transects, starting from the shoreline to the 

end of the tidal zone (Table 1). In autumn 2021, Triplicates and homogenized surface water 

samples (3L for each sample) were collected from ten sites using a water sampler (PVC tube 3 

L). All water samples were assembled in previously acid-washed high-density polyethylene 

(HDPE) bottles and transferred immediately to the laboratory using ice boxes at a temperature < 

4 °C. 

Table 1: Locations of Water Sampling Stations 

Region Sites symbol Latitude Longitude 

Safaga 

Transect 1 ST1 26° 36' 56.00" 34° 00' 49.00" 

Transect 2 ST2 26° 36' 59.00" 34° 00' 45.00" 

Transect 3 ST3 26° 37' 08.00" 34° 00' 32.00" 

Kalwaye Transect 1 KT1 26° 30' 30.30" 34° 04' 03.30" 

El-Quih 

Transect 1 QT1 26° 23' 53.90" 34° 07' 14.00" 

Transect 2 QT2 26° 23' 54.50" 34° 07' 10.00" 

Transect 3 QT3 26° 24' 00.90" 34° 06' 59.20" 

Transect 4 QT4 26° 24' 06.20" 34° 06' 50.70" 

Wadi El-Quih 
Transect 1 WT1 26° 21’ 10.45" 34° 09' 13.00" 

Transect 2 WT2 26° 21’ 12.03" 34°  09' 11.66" 

2.3. Physicochemical Parameters Analysis  

Surface water temperature (Temp), dissolved oxygen (DO), pH, salinity, electric conductivity 

(EC), and turbidity (Turb) were measured directly on site by using a multi-parameters probe 
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Hydrolab Instrument (HANNA HI 9028). In the laboratory, Phosphate (PO4
3-

), Nitrate as 

nitrogen (NO3
- 

- N), and Nitrite as nitrogen (NO2
- 

- N) have been determined according to 

standard methods (APHA 2017). All the used reagents were of analytical grade (BDH, England 

and Merck, Germany). 

      Table 2: Marine water quality guidelines for selected Physicochemical parameters  

Parameters 
Guideline levels 

Reference 

Natural Environment Mariculture 

Salinity ≤10% of the natural concentration  - CCME 1999 

Temp. 
±1°C at any site and time  - CCME 1999 

≤ 2 °C   over maximum ambient 
- MMWQS 2017 

pH 

7.0-8.7 - CCME 1999 

6.5-8.5 - USEPA 1986 

6.5 - 9 6.5 - 9 MMWQS 2017 

Turbidity 
≤ 2 NTU from background concentration 

 
- CCME 2002 

DO 

>5 mg/l for sensitive marine habitats. >6 mg/L MMWQS 2017 
 

3 – 7 mg/l for mangrove ecosystem - 
Muttaqin et al., 
2024 

Nitrate  10 µg/L. 60 µg/L MMWQS 2017 

Phosphate 5 µg/L. 75 µg/L. MMWQS 2017 

Nitrite  - - - 

  CCME: Canadian Council of Ministers of the Environment. 

  USEPA: U.S. Environmental Protection Agency. 

   MMWQS: Malaysian Marine Water Quality Standards. 

 
2.4. Statistical Analysis: 

Statistical Analysis System (SAS) version 9.4 and Pearson’s correlation coefficients were 

applied to verify the relationships among variables. 

3. Results and Discussions 
Marine water temperature is an important factor affecting water chemistry, sea currents, marine 

habitats, and the general global climate system. (Cordy, 2001; Kroeker et al., 2014) Surface 

marine water temperature values displayed no clear regional variations (Fig 3) . It ranged from 

26.32 to 26.63 OC with an average value of 26.52 OC. The statistical analysis of Pearson’s 

correlation coefficient indicates a moderate negative correlation between temperature and 

https://www.scirp.org/journal/paperinformation?paperid=72209#f2
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dissolved oxygen (r = -0.60, P < 0.05) and pH (r = -0.51, P < 0.05). However, a moderate 

positive association was observed between temperature and electric conductivity (r = 0.57, P < 

0.05), turbidity (r = 0.55, P < 0.05), and salinity (r = 0.53, P < 0.05) (Table 4).  

Table 3: Mean value ± SD of physicochemical parameters of water samples for the main 

study regions(n=3) 

 Safaga Kalwaye El-Quih Wadi El-Quih 

Temp. (°C) 26.4 ±0.1 26.4 ±0.0 26.6 ±0.0 26.5 ±0.0 

DO (mg/L) 5.48 ±0.16 6.8 ±0.10 3.89 ±0.85 6.6   ±0.23 

pH 8.4   ±0.20 8.55 ±0.38 8.01 ±0.27 8.57 ±0.06 

Salinity (ppt) 37.31 ±0.65 37.69 ±0.06 39.17 ±1.84 36.71 ±1.68 

EC (ms/cm) 55.97 ±1.18 56.71 ±0.09 58.69 ±2.41 55.33 ±2.21 

Turbidity (NTU) 0.52 ±0.31 0.3 ±0.07 1.81 ±1.64 0.54 ±0.15 

NO3 (µg/L) 80.01 ±4.5 71.3 ±2.1 75.0 ±5.0 70.1 ±3.6 

NO2 (µg/L) 1.24 ±0.48 1.47 ±0.15 2.64 ±1.06 1.82 ±0.30 

PO4 (µg/L) 9.11 ±7.47 6.33 ±2.52 2.72 ±3.94 7.5 ±2.74 

 

Fig 2. Turbidity (NTU), DO (mg/L), and pH values of water samples at study sites. 

Nearshore marine organisms inhabit a highly variable pH environment, with daily fluctuations 

due to biological activity (photosynthesis and respiration) pH values often exceeding 1 unit 

(Hofmann et al., 2011; Cornwall et al., 2013; Hurd et al., 2011). Figure 2 shows that pH levels in 

research areas ranged from 7.57 to 8.60, with an average of 8.27. The highest pH of 8.60 was 

recorded at the WT2 site in the Wadi El-Quih region, while the lowest pH of 7.57 was observed 

at the QT4 site in the El-Quih region. The pH range of all water samples was within the 
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permissible limits (6.5 to 9) of natural environment and mariculture (MMWQS,2017; 

USEPA,1986). Muttaqin et al.,2024 reported that the temperature and pH values of the marine 

aquatic environment are considered good for mangrove communities if they range between 28-

32 OC and 5.9-9.4, respectively. This confirms that all of the current study sites' pH and 

temperature levels are appropriate for mangrove ecosystem. The statistical analysis of Pearson’s 

correlation coefficient indicates that pH value has a strong negative correlation with salinity (r = 

-0.91, P < 0.05), and EC (r = -0.90, P < 0.05), while pH value has a strong positive correlation 

with DO (r = 0.96, P < 0.05). 

Dissolved oxygen (DO) is an important water quality indicator in marine water, dissolved 

oxygen levels in marine environments are influenced by physical factors like currents, 

upwelling, warm water, and air-sea exchange, as well as biological factors including 

productivity, respiration, and decomposition. (e.g., Breitburg et al.,2018; Somero et al., 2016). 

Previous research indicates that low-dissolved oxygen waters can upwell to nearshore coastal 

habitats, potentially impacting them. (Chan et al., 2019). 

The levels of dissolved oxygen in this study ranged from 2 to 5.50 mg/L in the Safaga and El-

Quih regions (characterized by abundance of mangroves(,while in the Kalwaye and Wadi El-

Quih regions, which lack mangrove communities, DO ranged from 6.43 to 6.80 mg/L (Fig 1).For 

sensitive marine habitats and fisheries, dissolved oxygen levels should be higher than 5 mg/L 

(MMWQS,2017; USEPA,2003). In a mangrove ecosystem, the ideal dissolved oxygen 

concentration ranges between 3 –7 mg/L (Muttaqin et al., 2024). According to the above, 

dissolved oxygen levels (2- 4.35 mg/L) in El-Quih region (mangrove-rich area) are unsuitable 

for habitats and fisheries environment, it might also have an impact on species and growth rates 

of mangroves. 

 Salinity, a crucial physicochemical influenced by climate change, significantly impacts marine 

ecosystem structure and function, leading to extensive changes in biogeochemical cycles. (Kirst, 

1990; Herbert et al., 2015; Villarino et al., 2018). Surface marine water salinity primarily 

depends on several factors including evaporation, precipitation, and freshwater added by rivers 

and rain. (Baumgartner and Reichel, 1975 ; Antonov et al., 2002). The salinity in the studied 

areas had a spatial average of 38.12 ppt and ranged from 36.41 ppt to 42.09 ppt. These salinity 

readings correspond to those of Red Sea water in various areas (36 ppt in the southern part and 

41 ppt in the northern part), where high salinity is attributed to high evaporation rate and low 

precipitation, and no significant rivers or streams drain into the sea (Naidu et al., 2003; Mezger 

et al., 2016). Many studies confirmed that the ideal salinity level for mangrove growth ranges 

between 10-30 ppt, mangrove species typically show increased growth at low to moderate 

salinity, followed by a decline as salinity rises further (Mendez-Alonzo et al., 2016; Kodikara et 

al., 2018; Basyuni et al.,2019). The results of this study indicate that the El-Quih area recorded 

the highest salinity value, with an average of 39.17 ppt, and this may affect the growth rates of 

mangrove trees (table 3). The statistical analysis of Pearson
’
s correlation coefficient (Table 4)  

indicates that salinity has a strong negative relationship with DO (r = -0.86, P < 0.05). In 

contrast, salinity has a strong positive correlation with EC (r=0.99, P < 0.05), and turbidity (r = 

0.77, P < 0.05). 

The values of electric conductivity ranged from the lowest averages (55.33 ms/cm) which are 

found in Wadi El-Quih Region and the highest averages (58.69 ms/cm) were found in El-Quih 

Region. (Table.3; Fig.3).  

https://atlas-scientific.com/blog/why-is-dissolved-oxygen-important/
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Fig 3. Temperature(

o
C), Salinity(ppt) , and Electric conductivity(ms/cm) values of water samples 

at study sites. 

The turbidity of marine water is mainly related to parameters such as total suspended matter, 

dissolved organic matter, phytoplankton, and algae concentration (Lee et al.,2015). Water 

turbidity is one of the most important quality indicators of an aquatic environment in general. 

Therefore, high turbidities cause lowered oxygen levels within water bodies directly impacting 

survival, growth, and reproduction in most aquatic organisms. (USEPA,2003; Shen et al., 2020). 

Figure 2 shows the turbidity in all the monitored areas, except in El-Quih region, was less than 

0.72 NTU in El-Quih region average of turbidity was 1.9 NTU and contributed to reducing the 

dissolved oxygen to limits between 2 to 4.35 mg/L. Where the turbidity level at Site QT2 

recorded 3.2 NTU. 

 Coastal marine environments are exposed to anthropogenic eutrophication due to nitrogen and 

phosphorus leaching from land-based sources and marine activities (Andersen et al.,2019; Phan 

and Stive, 2022). Excessive nutrient levels cause algal blooms that lower water oxygen levels 

(hypoxic conditions) causing loss of marine life, which has a catastrophic impact on coastal 

marine, significant socioeconomic impacts (e.g. Smith,1998; Schindler et al., 2008; Ho et al., 

2019). 
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Fig 4. NO3, NO2, and PO4 concentrations of water samples at study sites 

Figure 4 shows that nitrate concentrations in study sites ranged between 67.17 to 83 µg/L which 

is higher than water quality standards for coastal marine areas (60 µg/L) according to 

(MMWQS,2017). When eutrophication is absent, surface waters have adequate oxygenation and 

consequentially, nitrate is the most common form of reactive nitrogen. Nitrite is a crucial 

element of the nitrogen cycle. Under higher oxygen conditions, nitrite is nitrified to NO3. 

Commonly the natural concentration of NO2 in marine water is very low, and minimum levels of 

dissolved oxygen support nitrite formation (Nelson and Hutchings ,1983; CCME,2012). The 

present study's findings indicate that in transect sites with dissolved oxygen higher than 5 mg/L, 

nitrite levels were less than 1.87 µg/L, while nitrite concentrations ranged between 2.15-3.65 

µg/L in the El-Quih area, where oxygen levels were below 5 mg/L(Fig.4).The data in Pearson 

correlation matrix shows that nitrite has a strong positive correlation with surface water 

temperature (r = 0.82, P < 0.05)(Table 4). Phosphate concentrations varied from 0.12 µg/L at the 

QT4 site to 14.33 µg/L at the ST2 site, with a minimum average of 2.72 µg/L in the El-Quih 

Region and a maximum average of 9.11 µg/L in the Safaga Region. Based on guidelines of 

marine water quality (MMWQS,2017), the average of these concentrations falls within the 

acceptable ranges for the marine aquatic environment (5-75 µg/L). Dissolved phosphate was 

negatively correlated with NO2 (r = -0.40, P < 0.05), and positively associated with dissolved 

oxygen (r= 0.60, P < 0.05) and NO3 (r = 0.12, P < 0.05), (Table 4). 

Table 4: Pearson correlation matrix for all investigated parameters.  

 Temp. DO pH Salinity EC Turb. NO3 NO2 PO4 

Temp. 1         
DO -0.60 1.00        
pH -0.51 0.96 1.00       

Salinity 0.53 -0.86 -0.91 1.00      
EC 0.57 -0.85 -0.90 0.99 1.00     

Turb. 0.55 -0.71 -0.68 0.77 0.77 1.00    
NO3 0.05 -0.34 -0.20 0.32 0.28 0.42 1.00   
NO2 0.82 -0.59 -0.64 0.58 0.62 0.32 -0.25 1.00  
PO4 -0.35 0.60 0.64 -0.54 -0.56 -0.68 0.13 -0.40 1.00 
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The El-Quih region's poor water quality could be caused by geological processes (erosive, 

sedimentary, etc.) or biological activities or natural wildlife. To improve the quality of the 

aquatic environment of the mangrove communities in the El-Quih area, good environmental 

management and ongoing monitoring are required. 

 

Conclusion 
The Red Sea coast is characterized by mangrove communities in many areas that can confront 

climate change. This study was conducted on Egyptian Red Sea coast; it has focused mainly on 

assessment of the aquatic environment quality of mangrove plants in Safaga and El-Quih regions 

compared to water quality in Wadi El-Quih and Kalwaye regions (devoid of mangroves). The 

levels of physiochemical parameters (temperature - DO - pH - turbidity - electric conductivity - 

salinity – NO2 - PO4) were within the limits of CCME and MMWQS guidelines except 

for relatively low values of dissolved oxygen in the El-Quih area that ranged from 2-4.25 mg/L. 

Nitrate levels were high in all monitoring sites, which ranged between 67.17-75.47 µg/l. The El-

Quih region (mangrove-rich area) recorded maximum values in salinity, Turbidity, electric 

conductivity, and nitrites, while a minimum value in dissolved oxygen and phosphate. Low 

water quality in El-Quih area may be render to biological activity or natural wildlife, or 

geological processes (erosion, sedimentation,..). The aquatic environment of the mangrove 

communities in El-Quih area needs continuous monitoring and many measures to improve its 

quality. This helps conserve and develop mangrove forests, which contribute directly to reducing 

climate change through the absorption of greenhouse gases. 
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