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Abstract: 

Precision agriculture heavily relies on detailed spatial information about soil 

characteristics to promote long-term soil and plant health. The present research sought to 

evaluate, predict, map, and analyze the spatial variability of physicochemical properties in the 

Nubian Nasr Area of Aswan Governorate. Soil properties were measured, including electrical 

conductivity, texture, organic matter, calcium carbonate, pH, cation exchange capacity, 

exchangeable sodium percentage, available nutrients, and sodium absorption ratio. The mean 

values of the studied soil properties ranged from 2.85 to 449.58, with high values observed for 

available potassium, sand, available nitrogen, and CEC, and low values for other properties. The 

geographical distribution of these attributes was mapped and characterized using classical and 

geostatistical approaches. Spatial variability was quantified using semi-variogram models, and 

maps of projected values were created using ordinary kriging. Results indicated significant spatial 

variability in soil properties, with strong correlations between certain parameters. The semi-

variogram models that were determined to be best appropriate for the qualities under study were 

the exponential, Gaussian, K-Bessel, and J-Bessel models. The maps produced offer vital data for 

precision farming, allowing customized management plans to enhance soil health. Geostatistical 

techniques effectively characterized, predicted, and mapped spatial soil variability. 

Key words: Soil properties, Spatial variability, Geostatistic, Ordinary Kriging, Semi-variogram 

models.  

1. Introduction 
Several factors, such as land use, topography, parent material, organisms, human intervention, 

and time, significantly influence the spatial variation of soil properties (John et al., 2021; 

Rosemary et al., 2017). A deeper understanding of the vertical distribution of soil characteristics 

across different soil layers can enhance land management practices (Bogunovic et al., 2017).  
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The interaction of biological, natural, and chemical processes leads to considerable soil 

variability (Ghartey et al., 2012; Serrano et al., 2014). To better understand the complex 

relationships between soil properties and environmental factors, it is essential to map the spatial 

distribution of these properties. This knowledge is critical for assessing agricultural potential. By 

gaining insight into the spatial distribution of soil characteristics, we can optimize agricultural 

management strategies, tailor inputs to specific field conditions, and make informed decisions 

(Fathi et al., 2014). The identification and potential implementation of soil heterogeneity by data 

modeling is very important to increase land use efficiency, agricultural productivity, and 

ecological sustainability (Timuçin Everest and Gür, 2022; Ouallali et al., 2024).  Monitoring 

and mapping these variations can significantly improve nutrient management practices, leading to 

increased agricultural productivity and enhanced food security (Shalaby et al., 2017; Brevik et 

al., 2016; Lima et al., 2019). 
 

Soil mapping and analysis are significantly improved with GIS tools. These tools offer a rapid, 

cost-effective, precise, and environmentally friendly alternative to traditional methods. 

Furthermore, geostatistical techniques within GIS provide the ability to accurately estimate soil 

properties in unmeasured locations and understand how various factors impact soil patterns 

(Webster and Oliver, 2007). To optimize agricultural practices and meet the specific needs of 

various soil and crop types, understanding the spatial variation of soil properties is essential 

(Jabro et al., 2010; Fraisse et al., 1999; Cruz et al., 2011). This knowledge is also crucial for 

maximizing soil sampling techniques (Goenster-Jordan et al., 2018). Geostatistical methods are 

effective tools for analyzing the locative patterns and variability of characteristics of soil 

(AbdelRahman et al., 2021; John et al., 2021; Liu et al., 2014; Zhang et al., 2015). By 

leveraging spatial relationships between sampled and unsampled locations, these techniques can 

accurately predict soil parameters, reducing uncertainty and costs (AbdelRahman et al., 2021). 

 

GIS technology facilitates the efficient processing of large amounts of spatial data, offering more 

precise insights into soil properties. Comprehending the temporal and spatial variations in soil 

characteristics is essential for assessing the impact of agricultural practices on the environment 

(Arnous and Hassan, 2006; Goenster-Jordan et al., 2018). Kriging, a powerful geostatistical 

interpolation technique, is widely used in various agricultural applications. Researchers have 

applied GIS and geostatistical methods to spatially interpolate soil properties, evaluate land, and 

assess land suitability (Nada et al., 2022; Abdullahi et al., 2023; Okashaa, 2023). The choice 

of kriging model count on the properties of the data and the desired spatial model. Ordinary 

kriging (OK) is widely applied for predicting the spatial distribution of soil parameters (Tang et 

al., 2017; John et al., 2021). However, OK does not consider the potential influence of other 

environmental factors on the spatial patterns of soil properties (Ferreiro et al., 2016; 

AbdelRahman et al., 2021). 

 

The Nubian Nasr region, situated in the Nile Valley's eastern region, is part of the Eastern Desert. 

This area, an extension of the Kom Ombo basin to the east of Aswan, is likely to share the same 
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geological origins. The region's topography is mostly flat, covered by sand and gravel deposits 

from an ancient east-west river channel that predates the current Nile River (Issawi et al., 2016). 

The main objectives of this study were: (1) to assess the significant soil physicochemical 

properties of the investigation region using geostatistical analysis, and (2) to use GIS and 

geostatistical techniques to map the spatial variation of these soil properties. The objective is to 

provide a decision-making framework and guide future planning for the studied area. 
 

2.  Materials and Methods 

2.1. Area of study 

The area under study is part of the Eastern Egyptian Desert in Aswan Governorate; it is situated 

between latitudes 24° 27' 30" and 24° 35' 0" N and longitudes 33° 0' 0" and 33° 6' 0" E (Fig. 1) 

and covers an area of 107.51 Km
2
 (10750.64 hectares). The study region, located in the Eastern 

Desert along the Nile Valley, is geologically linked to the Kom Ombo basin. Its flat landscape is 

characterized by ancient sand and gravel deposits, remnants of a river system older than the 

present-day Nile (Issawi et al., 2016).  

 

 
 

Figure 1: A map showing the study area location 

 

2.2. Soil sampling and laboratory analysis  

To represent each type of land and different geographical features, eighty-one soil samples were 

collected from 27 soil profiles. Soil profiles have from a depth of 120 to 150 cm.  Soil samples 

were Air-dried, crushed, and sieved through a 2-mm sieve in preparation for physical and 
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chemical testing. An EUTECH conductivity meter was used to test the electrical conductivity 

(EC), and a HANNA pH meter was used to assess the pH of the generated 1:1 soil-water 

combination. The percentages of clay were calculated using the pipette method, silt, and sand 

fractions (Richards, 1954); a calcimeter was used to calculate the lime contents (Soil Survey, 

1992) and the Walkley-Black method, modified by Jackson (Jackson, 1958), was used to 

calculate the organic matter. Capacity for cation exchange (CEC) was computed using the 

sodium acetate-ammonium acetate technique (Richards, 1954). Available Nitrogen (N) was 

determined using the Kjeldahl method (Subbiah and Asija, 1956). Available phosphorus (P) was 

measured calorimetrically using a Jasper single-beam ultra violet and visible spectrophotometer 

at 660 nm (Olsen et al., 1954). Available potassium (K) was analyzed by flame photometry using 

a Metzer Flame Photometer (Toth and Prince, 1949).  

The mean weighted value for every evaluated soil characteristic (V) was calculated by 

multiplying the parameter value (Vi) of each horizon by its thickness (ti) and then dividing the 

sum by the total depth of the soil profile (T). This calculation was performed using the following 

equation: 

                                                                               V =    ∑
(       )

 

 
    

2.3 Climatic Conditions 

Aswan's climate (2014-2023) is characterized by extreme seasonal variations. Temperature 

patterns show hot, dry summers (May-Oct) with a peak average maximum temperature of 

37.94°C in August and cool, dry winters (Dec-Mar) with a minimum average minimum 

temperature of 7.13°C in January. The significant temperature range classifies the soil as 

"thermic" (temperature) and "torric" (moisture). Rainfall is minimal, peaking at 7.82 mm in 

March, with a prolonged dry season (Jun-Oct). Relative humidity fluctuates, reaching its lowest 

at 29.91% in May and highest at 61.42% in December. Wind speed ranges from 8.22 km/h in 

January to 12.98 km/h in September. 

2.4. Statistics analyses 

Descriptive statistical data (range, minimum, maximum, mean, standard deviation, coefficient of 

variation (CV), skewness, and kurtosis) were calculated using SPSS 17 to describe soil 

variability. Wilding (1985) defined low variability as CV < 15%, moderate as 15%-35%, and 

high as CV > 35%. 

In ArcGIS 10.8.3., the researched soil data were connected to the sampling location (spatial). 

Programs and maps showing the spatial distribution were prepared to determine the diversity of 

recognized soil properties. With the use of point data, ArcMap GIS 10.2.2 generated maps of a 

variety of soil parameters, including ECe, pH, O.M, CEC, CaCO3, ESP, SARe, (N), (P), (K), and 

texture. The addition for geostatistical analysis in ArcGIS 10.8.3 was used to conduct 

geostatistical analysis (ESRI, 2019). 

The Kriging procedure utilizes a semivariogram model, a mathematical function that describes 

spatial relationships, fitted to the data using weighted missing squares, range, nugget, and sill. 

Among Kriging methods, Ordinary Kriging (OK) is favored for its clarity and accuracy (Isaaks 
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and Srivastava 1989). However, Kriging methods, including OK, are most effective when the 

data is approximately normally distributed (Johnston et al., 2001). The Kriging procedure is 

calculated using equation (1) (Webster and Oliver, 2007). 

Z
*
 (  ) =  ∑     (  )

 
                                      (1) 

 

Here, n is the number of locations used for interpolation, Z(  ) is the predicted value at an 

unsampled site   , Z(  ) is the measured value at location   , and    is the weight assigned to 

Z(  ). Data points xᵢ are selected within a specified nearness. 

To ensure whether the data were normally distributed and exhibited equal variance, data 

transformations were applied. Histograms and normal QQ plots were utilized to identify the 

necessary data adjustments for achieving a more normal distribution. Transformation techniques 

were used to verify the normal distribution of each soil characteristic. 

Of these trends, logarithmic transformations were used to normalize outliers and highly skewed 

data sets (Webster and Oliver, 2007). The main technique used to examine the spatial 

distribution of soil attribute structure is semi-variograms. According to Wang and Shao (2013), 

they were calculated using Equation (2), which is predicated according to the localized approach 

of variables and intrinsic assumptions (Nielsen and Wendroth, 2003). 

 ( )  
 

  ( )
∑ [ (  )  (    )

 ] ( )
                 (2) 

n(h) represents the number of sample pairs within the lag interval distance h, whereas the real 

semi-variogram score at that distance is shown by  ( ).  (  ) and Z(    ) represent the 

sample values at the two spatial locations    and     , respectively. 

Several semi-variogram models, including Stable, J-Bessel, K-Bessel, Hole Effect, Rational 

Quadratic, Gaussian, Exponential, Pentaspherical, Tetraspherical, Spherical, and Circular, were 

evaluated using cross-validation to ascertain which model best suited each soil feature. Error 

metrics such as Mean Error (ME), Mean Standard Error (MSE), Root Mean Square Error 

(RMSE), Average Standard Error (ASE), and Root Mean Square Standardized Error (RMSSE) 

were used to evaluate the predictive ability of these models. These metrics were calculated using 

equations (3) to (7), respectively. More accurate forecasts are shown by lower values of these 

error measures. 

ME=
 

 
∑ [  (  )   (  )]
  
    

 

(3)   

MSE=
 

 
∑ [

  (  )  (  )

  (  )
]  

                   

         

(4)   

RMSE=√
 

 
∑ [  (  )   (  )]
  
              

(5)   
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ASE=√
 

 
∑   (  )
  
                                  

 

(6)   

RMSSE=√
 

 
∑

  (  )  (  )

  (  )
  
                      

 

(7)   

The premise of equal variance in the data was satisfied and the data was made normally 

distributed by the application of transformations. Modifications to normalize the data were 

identified using QQPlots and histograms in ArcGIS statistical analysis. Every soil characteristic 

was subjected to a trend analysis. When dealing with severely skewed and anomalous data, 

logarithmic transformations were employed. In this research, the semivariogram models were 

tested for each property data set. Prediction performance was evaluated by cross-validation that 

checks The precision of the produced surfaces. Cross-validation helps us to identify which model 

delivers the best predictions. According to Johnston et al. (2001), a model must have mean 

standardized error (MSE) values near zero, average standard error (ASE) values as minimal as 

feasible (helpful for comparing models), and root mean square standardized error (RMSSE) 

values near one in order to produce reliable predictions. 
 

3. Results and discussion 

3.1. Descriptive statistics 

The soil properties displayed considerable variability across the investigated soil profiles as shown in the 

table (1). Significant differences were observed among the profiles in terms of mean, minimum, 

maximum, range, standard deviation, coefficient of variation, skewness, and kurtosis values. Some 

properties, such as available nitrogen, available potassium, and exchangeable sodium percentage (ESP), 

exhibited substantial disparities between their minimum and maximum values, whereas pH and organic 

matter (OM) had relatively smaller ranges. 
 

The mean values ranged from 2.85 to 449.58, with high values observed for available potassium, 

sand, available nitrogen, and CEC, and low values for other properties. The standard deviation 

varied from 0.50 to 278.53, indicating that some properties, like pH and OM, had values 

clustered around the mean, while others, such as available nitrogen, available potassium, and 

ESP, were more dispersed. 
 

The coefficient of variation (CV) ranged from 2.05% to 32.80%, with pH showing the lowest 

variability and the rest of the properties exhibiting moderate to high variability. This variability 

can be attributed to factors like agricultural management practices, soil type, and climate 

conditions. Salinity, being highly susceptible to these factors, showed the highest variability, 

while pH, due to soil buffering capacity, showed the lowest. 
 

Most soil properties, except pH, OM, and sand, exhibited positive skewness, indicating non-

normal distribution. Logarithmic transformation was applied to normalize these skewed datasets. 

Kurtosis values also indicated non-normality for most properties, necessitating transformation 

prior to geostatistical analysis. 
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Table 1: Descriptive statistics of the studied soil properties. 

Property Range Min. Max. Mean St.D CV% Skewness Kurtosis 

CaCo3 (%) 22.06 2.45 24.51 10.28 4.71 15.27 0.77 0.33 

O.M (%) 4.31 1.00 5.31 2.85 1.26 14.70 0.14 -1.05 

pH(1:1) 1.85 7.15 9.00 8.15 0.50 2.05 -0.21 -0.74 

ESP (%) 65.44 0.75 66.19 16.59 15.67 31.50 1.62 2.06 

Sand (%) 64.32 25.92 90.24 64.17 12.35 6.42 -0.72 0.85 

silt (%) 57.28 4.08 61.36 19.49 9.24 15.80 1.52 4.67 

Clay (%) 51.12 4.92 56.04 16.34 10.00 20.40 1.47 2.56 

CEC"meq/100g" 39.70 9.82 49.51 22.53 12.84 18.99 0.81 -1.11 

ECₑ dS/m 45.77 1.58 47.35 7.66 7.54 32.80 3.08 12.72 

SARe 57.94 2.57 60.51 10.74 9.57 29.72 3.08 12.36 

k (mg.kg
-1

) 1356.52 19.33 1375.85 449.58 278.53 20.65 0.49 0.19 

N (mg.kg
-1

) 160.00 5.00 165.00 32.78 24.21 24.62 2.80 11.53 

P (mg.kg
-1

) 18.02 2.98 21.00 8.60 3.98 15.43 1.30 1.52 

 CV= Coefficient of Variation, St.D = Standard Deviation    

3.2. The relationships between the investigated soil characteristics. 

 

Data in table (2) show the correlation coefficients among the studied soil properties of the soil 

profiles. There is a negative correlation (at P=0.01) between the sand fraction and each of CEC, 

K, clay and silt. Moreover, there is a notably favorable association (at P=0.01) between clay and 

each of CEC and k, as well as CaCO3 and each of K and ECe , also ECₑ and both of SARe , ESP 

and K, in addition to ESP and both of pH and SARe. The positive correlation between CaCo3 and 

K may be due to the fact that calcium carbonates fix high amounts of K, making potassium less 

susceptible to leaching into the soil. The negative correlation between sand and each of silt and 

clay is because the sum of all fractions equals a unchanged value (100%), so the rise in any of 

them offset by the decrease in the rest. 

  

The negative relationship between sand and potassium is due to the fact that the sand part does 

not have the ability to exchange cations because it does not carry electrical charges, which makes 

it lose ions such as potassium easily through leaching. However, the negative correlation between 

sand and CEC is due to the inability of sand to exchange cations due to its lack of electrical 

charges, causing a negative correlation with CEC (Blume et al., 2016). The correlation between 

clay and CEC is high (r = 0.74), and it is due to, as it is known, that the clay has a great capacity 

to adsorb and hold cations because its particle surfaces are very rich in negatively-charged sites.  

 

A positive correlation was obtained between ECe and both ESP and SAR. The soils of the study 

area in some parts contain elevated values of dissolvable salts predominated by sodium ions 

(Na
+
) concluding in a significant positive correlation between ECe and ESP. The positive 

relationship between ESP and pH is due to the effect of ESP on increasing pH. A positive 

correlation was obtained between ECe and both K and CaCo3, which is due to the fact that 

increasing K and CaCo3 in the soil increases ECe. The results showed that the correlation between 
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soil parameters for nitrogen, phosphorus, and organic matter is low due to the wide spatial 

variation of these properties.  

 Table (2): Correlation coefficients of the analyzed soil properties. 
 O.M CaCo3 pH ECₑ SARe ESP CEC Sand silt Clay N P K 

O.M 1             

CaCo3 0.420* 1            

pH 0.089 0.115 1           

ECₑ 0.405* 0.493** 0.343 1          

SARe 0.359 0.362 0.221 0.918** 1         

ESP 0.425* 0.394* 0.515** 0.829** 0.683** 1        

CEC -0.088 0.280 -0.186 0.160 0.260 -0.271 1       

Sand 0.042 -0.196 -0.227 -0.337 -0.417 -0.019 -0.660** 1      

Silt -0.154 -0.038 0.276 0.203 0.262 0.154 0.122 -0.682** 1     

Clay 0.114 0.304 -0.002 0.226 0.268 -0.145 0.749** -0.583** -0.197 1    

N 0.069 0.166 -0.301 0.312 0.438* 0.044 0.124 -0.080 -0.017 0.126 1   

P 0.356 0.221 0.259 0.188 0.160 0.447* -0.301 0.111 -0.019 -0.127 0.042 1  

K 0.309 0.496** 0.307 0.504** 0.408* 0.371 0.262 -0.496** 0.208* 0.433** 0.080 0.100 1 

*Correlation is significant at the 0.05 level (2-tailed). 

** Correlation is significant at the 0.01 level (2-tailed). 

 

3.3. Geostatistics and spatial analysis  

To assess the normality of the soil property data (Table 3), histograms and normal Q-Q plots 

were employed. While some properties, including pH, organic matter (OM), potassium (K), sand, 

and silt, exhibited normal distributions, others required a log transformation to achieve normality. 

By analyzing maps that show how soil characteristics vary across an area and understanding how 

these characteristics affect plant growth, decision-makers can pinpoint regions with high, 

medium, and low soil quality (Vasu et al., 2017). 

As illustrated in Figure 2, potassium (K), a normally distributed property, displays a One-

dimensional form, a small positive skewness value (0.30) approaching 0, and a kurtosis value 

(2.15) close to 2.0, indicating a normal distribution. In contrast, ECe, a skewed property, 

necessitated a log transformation to normalize its distribution. Analyzing spatial distribution 

maps of soil properties can aid in identifying regions with varying soil quality, informing 

decisions related to plant growth. Figures 3, 4, 5, and 6 depict the locative distribution of selected 

soil properties. Clay fraction and CEC exhibit similar spatial patterns due to their strong positive 

correlation. Similarly, ESP, ECe, and SAR share congruent spatial distributions, with the 

exception of soil salinity. 

The locative distribution of the sand fraction was inversely related to the clay fraction. No 

discernible spatial trends were observed for pH, nitrogen (N), phosphorus (P), OM, CaCO3, and 

K. 

The generated spatial distribution maps (Figures 3, 4, 5, and 6) categorize soil characteristics, 

identifying areas suitable for cultivation and those requiring careful management. These maps 
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provide valuable insights into the spatial variability of soil attributes within the study region, 

enabling the implementation of site-specific management practices.
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Table 3: Weighted means of soil properties for the investigated profiles in the research area. 

Profile 

No. 

O.M 

(%) 

CaCo3 

(%) 

pH ECₑ 

dS/m 

SARe Esp 

(%) 

CEC 

(meq/100) 

N 

 

P 

 

k 

 

Particle size distribution Soil texture 

(mg.kg
-1

) Sand % Silt % Clay % 

1 3.44 9.76 7.83 3.76 7.90 7.81 12.09 30.00 7.68 792.01 54 18 28 Sandy Clay loam 

2 1.68 5.21 7.72 3.10 5.55 6.34 12.76 30.00 6.09 218.81 77 10 13 sandy loam 

3 2.78 6.13 7.79 2.36 4.80 1.81 12.86 30.33 4.21 349.15 57 34 9 sandy loam 

4 3.39 7.21 7.62 7.37 11.79 7.89 13.09 28.46 8.87 132.88 64 15 21 Sandy Clay loam 

5 3.05 10.83 8.28 2.73 5.76 7.42 13.64 36.33 6.33 265.36 58 22 19 sandy loam 

6 2.37 14.83 7.53 3.21 5.67 5.61 14.47 22.00 8.64 194.88 63 19 18 sandy loam 

7 1.42 13.56 8.64 6.01 10.57 8.65 15.03 16.33 6.40 738.81 49 28 24 Sandy Clay loam 

8 1.67 7.72 8.32 8.66 12.40 15.06 17.08 24.00 8.29 518.05 42 52 6 silt loam 

9 2.31 9.93 8.02 5.96 8.18 18.73 17.93 39.00 13.77 422.29 65 21 14 sandy loam 

10 1.73 8.62 8.43 9.82 10.42 9.80 17.97 25.67 7.65 609.81 38 19 43 Clay 

11 1.46 6.29 8.41 6.26 9.07 19.26 19.79 27.00 6.17 282.65 67 21 12 sandy loam 

12 2.08 7.51 8.33 6.84 10.97 12.31 20.51 30.00 10.79 443.24 53 29 19 sandy loam 

13 2.08 14.09 7.62 2.80 4.17 3.42 20.57 40.33 8.53 343.83 77 12 12 sandy loam 

14 1.63 3.39 8.26 2.27 3.29 8.61 20.59 33.08 9.33 57.69 80 10 10 sandy loam 

15 1.87 4.08 8.17 2.44 3.25 10.93 22.03 25.00 6.27 339.84 68 19 13 sandy loam 

16 2.49 12.25 8.15 2.89 5.90 17.67 22.21 25.00 13.15 310.58 70 15 14 sandy loam 

17 3.55 11.27 8.70 10.94 16.86 35.19 26.44 24.00 11.68 174.93 61 28 11 sandy loam 

18 3.14 9.68 7.70 6.40 10.58 9.21 27.88 25.67 6.39 311.91 64 13 22 Sandy Clay loam 

19 3.71 11.23 8.40 16.49 20.85 56.56 31.32 19.33 12.12 619.12 70 22 8 sandy loam 

20 2.93 22.21 8.47 19.27 16.91 43.21 31.51 31.25 7.08 557.94 65 20 15 sandy loam 

21 3.42 13.93 8.11 24.66 43.42 35.33 33.36 58.33 8.74 643.06 46 25 29 Sandy Clay loam 

22 2.12 4.76 7.95 3.81 5.48 5.46 33.51 28.08 5.91 266.38 82 8 10 loamy sand 

23 3.93 10.05 8.52 3.74 4.91 14.73 33.95 21.67 10.62 293.29 70 15 15 sandy loam 

24 3.60 17.92 8.23 12.72 15.40 19.54 33.96 22.50 7.86 632.75 59 9 32 Sandy Clay loam 

25 3.76 12.05 8.44 2.64 3.64 10.31 34.44 22.00 10.43 605.82 69 13 17 sandy loam 

26 3.95 18.38 8.16 13.17 13.21 28.35 38.87 41.92 11.19 884.80 62 18 19 sandy loam 

27 3.61 6.66 8.53 14.85 15.89 39.46 41.30 21.33 9.57 592.52 69 20 11 sandy loam 

 



Aswan University Journal of Environmental Studies (AUJES) 6 (1), pp. 63-80, (2025). 

Online ISSN: 2735-4237, Print: ISSN 2735-4229. https://aujes.journals.ekb.eg/ 

 

Page 73  Shaalan et al., 2025 
 

Dataset: Properties Attribute: K Dataset: Properties Attribute: K 

K 

Dataset: Properties Attribute: ECe Dataset: Properties Attribute: ECe 

ECe before Log Transformation 

Dataset: Properties Attribute: ECe Dataset: Properties Attribute: ECe 

ECe after Log Transformation 

Figure (2): QQPlot with histograms for ECe (before and after log transformation) and K (normally distributed). 
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         Figure (3): Maps of spatial distribution for pH, ECe, SARe and O.M in the studied area. 
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          Figure (4): Maps of spatial distribution for ESP, CaCo3 , CEC and Clay in the studied area. 

  

  

           Figure (5): Maps of spatial distribution for N, P, K and Sand in the studied area. 
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          Figure (6): Maps of spatial distribution for Silt and Soil texture in the studied area. 

In the present study, the semivariogram models (Exponential, Gaussian, K-Bessel and J-Bessel) are 

examined for each soil property data set. The cross validation evaluates prediction capabilities by 

looking at the generated surfaces' correctness. The cross-checking procedure technique is used to 

determine the best accurate predictions for soil properties with the lowest mean standardized error 

(MSE) values (around zero) after using different models for every soil attribute that was examined in 

this research. The smallest MSE values suggest kriging predictions of soil parameters that are closest to 

the observed values. The models that produce the best outcomes are selected.  

          Table 4: Semivariogram models for the soil properties of the studied profiles. 

Properties Models Errors in Prediction 

Mean RMS ASE MS RMSSE Skewness Kurtosis 

CaCo3 (%) J-Bessel -0.06 4.30 4.23 -0.02 1.02 -0.31 2.53 

O.M  (%) Exponential -0.02 0.65 0.74 -0.02 0.86 -0.05 1.51 

pH J-Bessel 0.00 0.30 0.31 -0.01 0.97 -0.38 2.02 

ESP(%) Gaussian 0.45 12.39 15.18 0.04 0.72 -0.12 2.80 

Sand (%) K-Bessel -0.381 10.61 10.48 -0.03 1.01 -0.45 2.83 

Silt (%) Gaussian 0.01 8.92 8.62 0.00 1.02 0.14 3.05 

Clay (%) Exponential -0.58 10.27 5.06 -0.42 2.41 1.31 4.65 

CEC "meq/100g" Gaussian 0.55 8.61 8.43 0.05 1.02 0.36 1.81 

ECₑ dS/m K-Bessel -0.04 4.82 7.84 0.01 0.67 0.24 1.87 

SARe Gaussian -0.54 7.61 6.66 -0.05 1.09 2.51 10.78 
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Properties Models Errors in Prediction 

Mean RMS ASE MS RMSSE Skewness Kurtosis 

k (mg.kg-1 ) K-Bessel -8.73 204.11 205.06 -0.03 0.99 0.30 2.15 

N (mg.kg-1 ) J-Bessel 0.14 7.81 6.81 0.02 1.12 1.57 6.12 

P (mg.kg-1 ) Exponential 0.03 2.34 2.34 0.01 1.00 0.37 2.37 

The abbreviations are as follows: RMS: Root Mean Square, ASE: Average Standard Error, MS: Mean 

Standardized and RMSSE: Root Mean Square Standardized Error. 

 

Table 4 presents the best-performing templates as well as their corresponding incorrect prediction values 

for each examined soil attribute. The table also highlights that alternative models may yield superior 

results for specific soil properties. While the mean standardized error (MS) values are close to zero, the 

root mean square standardized error (RMSSE) values range from 0.67 to 2.41 (approaching two). These 

findings demonstrate that the selected semivariogram models effectively represent the spatial variability 

of the soil attributes, making them ideal for generating accurate spatial distribution maps. 

4. Conclusions 
The results showed that the soils in the study area exhibited a little to middling alkaline and a little to 

highly saline conditions, with varying levels of sodicity. The particle size distribution was highly 

variable, resulting in a wide range of soil textures, from sandy to clay. Organic matter content was 

moderate, and capacity for cation exchange varied from low to high. Log-transformation proved 

effective in normalizing skewed datasets. Semivariogram models were found to be suitable for all 

investigated soil properties. Double-checking was utilized to identify the best-fitting model for each 

property. Gaussian, J-Bessel, Exponential, and K-Bessel models emerged as the most appropriate for 

different soil properties. The generated maps categorize soil characteristics, identifying areas suitable for 

cultivation and those requiring careful management. These maps help understand how soil properties 

influence plant growth and identify regions with high, medium, and low soil quality, aiming to increase 

soil productivity and mitigate limitations. 
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